近似数的由来?
近似数(approximate number)是指与准确数相近的一个数。
生活中有的量很难或没有必要用准确数表示,而是用一个有理数近似地表示出来,我们称这个有理数为这个量的近似数。
如长江的长约为6300㎞,这里的6300㎞就是近似数。因此,我们把接近准确数而不等于准确数的数,叫做这个数的近似数或近似值。
一个近似数的精确度通常有以下两种表述方式:
1、用四舍五入法表示。一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。
2、另外用有效数字表示。用有效数字的个数表述。用四舍五入得到的近似数,从左边第一个不是零的数字起,到末位数字为止的数所有数字,都叫做这个数的有效数字。
近似数是谁发明的?
《九章算术》里也采用“四舍五入”的方法,在用比例法求各县应出的车辆时,因为车辆是整数,他们就采用四舍五入的方法对演算结果加以处理。
公元237年三国魏国的杨伟编写“景初历”时,已把这种四舍五入法作了明确的记载:“半法以上排成一,不满半法废弃之。”法在这里指的是分母,意思是说,分子大于分母一半的分数可进1位,否则就舍弃不进位。
公元604年的"皇极历”出现后,四舍五入的表示法更加精确:“半以上为时,以下为退,退以配前为强,进以配后为弱,”在“皇极历”中,求近似值如果进一位或退一位,一般在这个数字后面写个“强”或“弱”字,意思就表明它比所记的这个数字多或不足,这种四舍五入法,完全和现在的相同。
在计算近似值时,除了用四舍五入法以外,还有其他方法。《九章算术》里已经出现了开方和近似公式,但是这个公式的误差较大。到了《孙子算经》中,采用了新的近似值的计算法——不加借算法公式,到了《五经算术》和《张邱建算经》中,又提出了一个更加精确的计算近似值的公式——加借算法公式。而印度的开方方法与我国基本相似,但是比我国要晚500多年。
在西方,有关近似值的算法应该首扒欧几里得的除法率。它是利用强弱二率来计算近似数值的,但是他的这一算法我国南北朝时的何承天也已经独立地使用过,只不过比欧几里得的要晚几百年。
2答案 武则天,我国古代著名女数学家,因其发明了过五则添这
一算术法则而得名,故名“五则添”(武则天)
中国的微积分萌芽时期的历史成就?
南宋大数学家秦九韶于1274年撰写了划时代巨著《数书九章》十八卷,创举世闻名的“大衍求一术”——增乘开方法解任意次数字(高次)方程近似解,比西方早500多年。
特别是13世纪40年代到14世纪初,在主要领域都达到了中国古代数学的高峰,出现了现通称贾宪三角形的“开方作法本源图”和增乘开方法、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余式组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次差内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世界数学史上有重要地位的杰出成果,中国古代数学有了微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键。
到此,以上就是小编对于中国历史近似时期的问题就介绍到这了,希望介绍关于中国历史近似时期的3点解答对大家有用。